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 Method MSE Corr

Oracle 0.042 0.77

Galileo 0.052 0.44

Uniform 0.081 0

The Galileo Model

•  Galileo: a genera7ve model that learns physical 
object proper7es from vision

•  Behavior experiments which evaluate the 
performance of humans and Galileo

Goal: building a genera7ve model to interpret physical scenes

•  Human infer rich informa7on from simple visual inputs.
•  Infants learn intui7on on physics when they are young.
•  Humans u7lize a realis7c physics engine as part of a genera7ve 

model to interpret real-world physical scenes.

Observa7on

101 Objects from 15 categories
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Oracle 0.042 0.71
POM 0.052 0.44
Uniform 0.081 0

Figure 3: Mean squared errors of oracle es-
timation, our estimation, and uniform esti-
mations of mass on a log-normalized scale,
and the correlations between estimations and
ground truths
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Figure 4: The log-likelihood traces of sev-
eral chains with and without recognition-model
(LeNet) based initializations.

model can then be used to predict these physical properties of objects based on purely visual cues,
even though they might have never appeared in the training set.

Physics 101 also provides masses of all objects in the dataset, which makes it possible for us to
quantitatively evaluate the predictions of the deep network. We choose one object per material as our
test cases, use all data of those objects as test data, and the others as training data. We compare our
model with a baseline, which always outputs a uniform estimate calculated by averaging the masses
of all objects in the test data, and with an oracle algorithm, which is a LeNet trained using the same
training data, but has access to the ground truth masses of training objects as labels. Apparently, the
performance of the oracle model can be viewed as an upper bound of our POM system.

Table 3 compares the performance of POM, the oracle algorithm, and the baseline. We can observe
that POM is much better than baseline, although there is still some space for improvement.

Because we trained LeNet using static images to predict physical object properties such as friction
and mass ratios, we can use it to recognize those attributes in a quick bottom-up pass at the very first
frame of the video. To the extent that the trained LeNet is accurate, if we initialize the MCMC chains
with these bottom-up predictions, we expect to see an overall boost in our log-likelihood traces. We
test by running several chains with and without LeNet-based initializations. Results can be seen in
Figure 4. Despite the fact that LeNet is not achieving perfect performance by itself, we indeed get a
boost in speed and quality in the inference.

6 Experiments

In this section, we conduct experiments from multiple perspectives to evaluate our model. Specifi-
cally, we use the model to predict how far objects will move after the collision; whether the object
will remain stable in a different scene; and which of the two objects is heavier based on observations
of collisions. For every experiment, we also conduct behavioral experiments on Amazon Mechanical
Turk so that we may compare the performance of human and machine on these tasks.

6.1 Outcome Prediction

In the outcome prediction experiment, our goal is to measure and compare how well human and
machines can predict the moving distance of an object if only part of the video can be observed.
Specifically, for behavioral experiments on Amazon Mechanical Turk, we first provide users four full
videos of objects made of a certain material, which contain complete collisions. In this way, users
may infer the physical properties associated with that material in their mind. We select a different
object, but made of the same material, show users a video of the object, but only to the moment
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