Motivation

Goal: building a generative model to interpret physical scenes

A Video Dataset

101 Objects from 15 categories

Observation

- Humans learn intuition on physics when they are young.
- Humans utilize a realistic physics engine as part of a generative model to interpret real-world physical scenes.

Scene Modeling

Descripive Physical Properties
- Velocity
- Bounce
- Height
- Extended Distance

Intrinsic Physical Object Properties
- Coeff. Friction
- Coeff. Restitution
- Mass
- Density
- Volume

The Galileo Model

Initialize MCMC

Draw two physical objects

Simulated velocities (v_{1x}, v_{1y})

Likelihood function

Observed velocities (v_{2x}, v_{2y})

Tracking algorithm

Cropped images

Experiments

<table>
<thead>
<tr>
<th>Method</th>
<th>MSE</th>
<th>Corr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle</td>
<td>0.042</td>
<td>0.77</td>
</tr>
<tr>
<td>Galileo</td>
<td>0.052</td>
<td>0.44</td>
</tr>
<tr>
<td>Uniform</td>
<td>0.081</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Simulation results

Mass estimation results

Is this heavier? Corr

Human vs Galileo 0.51
Human vs Truth 0.68
Galileo vs Truth 0.52
Will it move? Corr

Human vs Galileo 0.56
Human vs Truth 0.42
Galileo vs Truth 0.20

Conclusion

- **Galileo:** a generative model that learns physical object properties from vision
- Behavior experiments which evaluate the performance of humans and Galileo