
Galileo: Perceiving Physical Object Properties by 
Integrating a Physics Engine with Deep Learning

Ilker Yildirim* Joseph Lim Bill Freeman Josh TenenbaumJiajun Wu*

(* indicates equal contribution)

NIPS 2015



What can we learn from this video?



Understanding Dynamic 3D Scenes
• What can we learn from this video?
• 3D object shapes
• Physical events
• Physical object properties
• Masses 
• Coefficients of frictions

• Humans recover rich information from short videos.
• Generalization: Humans easily answer questions like
• What will happen next?

collisions rolling



A Simple Scenario in the Real World
• Galileo’s inclined surface experiment



Rich Physics in Simple Scenarios
IB A IA B

GA

NARA

NB

GB GA

NA

RA

NB

GB GA

NA NB

GB



Modeling the Physical World

Material Volume

Velocity

Mass

Acceleration
Extended
Distance

Coeff. 
Friction

Coeff. 
Restitution

Density

Bounce
Height

Material Volume

Velocity

Mass

Acceleration
Extended
Distance

Coeff. 
Friction

Coeff. 
Restitution

Density

Bounce
Height



Our Model: Galileo



Our Model: Galileo



Our Model: Galileo



Our Model: Galileo



Our Model: Galileo



Our Model: Galileo

Sampling



Sampling

Results



Material Volume

Velocity

Mass

Acceleration
Extended
Distance

Coeff. 
Friction

Coeff. 
Restitution

Density

Bounce
Height

Galileo as an Interpretation of Physical Scenes



Material Volume

Velocity

Mass

Acceleration
Extended
Distance

Coeff. 
Friction

Coeff. 
Restitution

Density

Bounce
Height

Galileo as an Interpretation of Physical Scenes



Material Volume

Velocity

Mass

Acceleration
Extended
Distance

Coeff. 
Friction

Coeff. 
Restitution

Density

Bounce
Height

Galileo as an Interpretation of Physical Scenes



Material Volume

Velocity

Mass

Acceleration
Extended
Distance

Coeff. 
Friction

Coeff. 
Restitution

Density

Bounce
Height

Galileo as an Interpretation of Physical Scenes



Faceid

Comparison

A) B)

Shape Texture

Light Pose

Approximate
Renderer

Sample

Observation

Faceid
C)

Shape Texture

Light Pose

Approximate
Renderer

Sample

...

...

...

...

...
...
...

Comparison

Observation

TCL
FFL

Cropped	image

Initialize	MCMC

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Methods
Mass

MSE Corr

Oracle 0.042 0.71
POM 0.052 0.44
Uniform 0.081 0

Figure 3: Mean squared errors of oracle es-
timation, our estimation, and uniform esti-
mations of mass on a log-normalized scale,
and the correlations between estimations and
ground truths

-2e+05

-1e+05

0e+00

0 20 40 60
Number of MCMC sweeps

Lo
g 

Li
ke

lih
oo

d

initialization with recognition model random initialization

Figure 4: The log-likelihood traces of sev-
eral chains with and without recognition-model
(LeNet) based initializations.

model can then be used to predict these physical properties of objects based on purely visual cues,
even though they might have never appeared in the training set.

Physics 101 also provides masses of all objects in the dataset, which makes it possible for us to
quantitatively evaluate the predictions of the deep network. We choose one object per material as our
test cases, use all data of those objects as test data, and the others as training data. We compare our
model with a baseline, which always outputs a uniform estimate calculated by averaging the masses
of all objects in the test data, and with an oracle algorithm, which is a LeNet trained using the same
training data, but has access to the ground truth masses of training objects as labels. Apparently, the
performance of the oracle model can be viewed as an upper bound of our POM system.

Table 3 compares the performance of POM, the oracle algorithm, and the baseline. We can observe
that POM is much better than baseline, although there is still some space for improvement.

Because we trained LeNet using static images to predict physical object properties such as friction
and mass ratios, we can use it to recognize those attributes in a quick bottom-up pass at the very first
frame of the video. To the extent that the trained LeNet is accurate, if we initialize the MCMC chains
with these bottom-up predictions, we expect to see an overall boost in our log-likelihood traces. We
test by running several chains with and without LeNet-based initializations. Results can be seen in
Figure 4. Despite the fact that LeNet is not achieving perfect performance by itself, we indeed get a
boost in speed and quality in the inference.

6 Experiments

In this section, we conduct experiments from multiple perspectives to evaluate our model. Specifi-
cally, we use the model to predict how far objects will move after the collision; whether the object
will remain stable in a different scene; and which of the two objects is heavier based on observations
of collisions. For every experiment, we also conduct behavioral experiments on Amazon Mechanical
Turk so that we may compare the performance of human and machine on these tasks.

6.1 Outcome Prediction

In the outcome prediction experiment, our goal is to measure and compare how well human and
machines can predict the moving distance of an object if only part of the video can be observed.
Specifically, for behavioral experiments on Amazon Mechanical Turk, we first provide users four full
videos of objects made of a certain material, which contain complete collisions. In this way, users
may infer the physical properties associated with that material in their mind. We select a different
object, but made of the same material, show users a video of the object, but only to the moment

6

Generative + Recognition Model
If	the	model	has	prior	knowledge	like	humans	do…

Inferred	mass

Faceid

Com
parison

A)
B)

Shape
Texture

Light
Pose

Approxim
ate

Renderer

Sam
ple

O
bservation

Faceid
C)

Shape
Texture

Light
Pose

Approxim
ate

Renderer

Sam
ple

... ... ... ... ...
... ...

Com
parison

O
bservation

TCL
FFL

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

&D
UG
ER

DU
G

'
RX

JK
3R

OH

�D� �E� �F� �G� �H� �I�

Figure 2: Simulation results. Each row represents one video in the data: (a) the first frame of the
video, (b) the last frame of the video, (c) the first frame of the simulated scene generated by Bullet,
(d) the last frame of the simulated scene, (e) the estimated object with larger mass, (f) the estimated
object with larger friction coefficient.

variables, where the proposal distribution is Uniform(�0.05, 0.05). In order to help with mixing,
we also use a broader proposal distribution, Uniform(�0.5, 0.5) at every 20 MCMC sweeps.

4 Simulations

For each video, as mentioned earlier, we use the tracking algorithm to initialize and fix the shapes
of the objects, S1 and S2, and the position offsets, p1 and p2. We also obtain the velocity vector for
each object using the tracking algorithm. We determine the length of the physics engine simulation
by the length of the observed video — that is, the simulation runs until it outputs a velocity vector
for each object that is as long as the input velocity vector from the tracking algorithm.

We sub-sample Physics 101 dataset, and choose 150 videos, uniformly distributed across different
object categories. We perform 16 MCMC simulations for each of the 150 videos, each of which was
75 MCMC sweeps long. For each video, we report the results with the highest log-likelihood score
across the 16 chains (i.e., the MAP estimate).

In Figure 2, we illustrate the results for three individual videos. Every two frame of the top row
shows the first and the last frame of a video, and the bottom row images show the corresponding
frames from our model’s simulations with the MAP estimate. We quantify different aspects of
our model in the following behavioral experiments, where we compare our model against human
subjects’ judgments. Furthermore, we use the inferences made by our model here on the 150 videos
to train a recognition model to arrive at physical object perception in static scenes with the model.

Importantly, note that our model can generalize across a broad range of tasks beyond the ramp
scenario. For example, once we infer the density of our object, we can make a buoyancy prediction
about it by simulating a scenario in which we drop the object into a liquid. We test some of the
generalizations in Section 6.

5 Bootstrapping to efficiently see physical objects in static scenes

Based on the estimates we derived from the visual input with a physics engine, we bootstrap from the
videos already collected, by labeling them with estimates of POM. This is a self-supervised learning
algorithm for inferring generic physical properties. As discussed in Section 1, this formulation is
also related to the wake/sleep phases in Helmholtz machines, and to the cognitive development of
infants.

Here we focus on two physical properties: mass and friction coefficient. To do this, we first estimate
these physical properties using the method described in earlier sections. Then, we train LeNet [8], a
widely used deep neural network for small-scale datasets, using image patches cropped from videos
based on the output of the tracker as data, and estimated physical properties as labels. The trained

5

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

&D
UG
ER

DU
G

'
RX

JK
3R

OH

�D� �E� �F� �G� �H� �I�

Figure 2: Simulation results. Each row represents one video in the data: (a) the first frame of the
video, (b) the last frame of the video, (c) the first frame of the simulated scene generated by Bullet,
(d) the last frame of the simulated scene, (e) the estimated object with larger mass, (f) the estimated
object with larger friction coefficient.

variables, where the proposal distribution is Uniform(�0.05, 0.05). In order to help with mixing,
we also use a broader proposal distribution, Uniform(�0.5, 0.5) at every 20 MCMC sweeps.

4 Simulations

For each video, as mentioned earlier, we use the tracking algorithm to initialize and fix the shapes
of the objects, S1 and S2, and the position offsets, p1 and p2. We also obtain the velocity vector for
each object using the tracking algorithm. We determine the length of the physics engine simulation
by the length of the observed video — that is, the simulation runs until it outputs a velocity vector
for each object that is as long as the input velocity vector from the tracking algorithm.

We sub-sample Physics 101 dataset, and choose 150 videos, uniformly distributed across different
object categories. We perform 16 MCMC simulations for each of the 150 videos, each of which was
75 MCMC sweeps long. For each video, we report the results with the highest log-likelihood score
across the 16 chains (i.e., the MAP estimate).

In Figure 2, we illustrate the results for three individual videos. Every two frame of the top row
shows the first and the last frame of a video, and the bottom row images show the corresponding
frames from our model’s simulations with the MAP estimate. We quantify different aspects of
our model in the following behavioral experiments, where we compare our model against human
subjects’ judgments. Furthermore, we use the inferences made by our model here on the 150 videos
to train a recognition model to arrive at physical object perception in static scenes with the model.

Importantly, note that our model can generalize across a broad range of tasks beyond the ramp
scenario. For example, once we infer the density of our object, we can make a buoyancy prediction
about it by simulating a scenario in which we drop the object into a liquid. We test some of the
generalizations in Section 6.

5 Bootstrapping to efficiently see physical objects in static scenes

Based on the estimates we derived from the visual input with a physics engine, we bootstrap from the
videos already collected, by labeling them with estimates of POM. This is a self-supervised learning
algorithm for inferring generic physical properties. As discussed in Section 1, this formulation is
also related to the wake/sleep phases in Helmholtz machines, and to the cognitive development of
infants.

Here we focus on two physical properties: mass and friction coefficient. To do this, we first estimate
these physical properties using the method described in earlier sections. Then, we train LeNet [8], a
widely used deep neural network for small-scale datasets, using image patches cropped from videos
based on the output of the tracker as data, and estimated physical properties as labels. The trained

5

…



Behavior Tests
• Prediction task
• How far will the object travel after collision?

ca
rdb

oa
rd

do
ug

h

ho
llow

 woo
d

meta
l co

in

meta
l p

ole

pla
stic

 bl
oc

k

pla
stic

 do
ll

pla
stic

 to
y

po
rce

lain

woo
de

n b
loc

k

woo
de

n p
ole

 M
ea

n
0

50

100

150

200

250

 E
rr

or
 in

 p
ix

el
s

Human
Galileo
Uniform Method Mean

Human 75.3
Galileo 71.9
Uniform 106.4



Behavior Tests
• Comprehension task
• Which of the two objects is heavier?

• Transfer task
• Will the object slide shown in a new scene setting?

Comprehension Transfer
Human vs. Galileo 0.51 0.56
Human vs. Truth 0.68 0.42
Galileo vs. Truth 0.52 0.20

Mass "Will it move"
0

0.2

0.4

0.6

0.8

1
Human
Galileo

Comprehension Transfer
Correlation coefficients between pairs of responses


